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Abstract

The indirect interaction between cosmological gravitational waves (CGWs)
and the surrounding matter content is considered, along with the evolution
of the Universe from the inflationary epoch to the matter dominated era.
Focusing on the power spectrum of the relic gravitational radiation, we arrive
at a simple formula which relates the spectral index with the evolutionary
period at which a CGW enters the horizon.
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1. Introduction

The so-called cosmological gravitational waves (CGWs) represent small-scale per-
turbations to the Universal metric tensor (Weinberg 1972). Since gravity is the
weakest of the four known forces, these metric corrections decouple from the rest of
the Universe at very early times, presumably at the Planck epoch (Maggiore 2000).
Their subsequent propagation is governed by the spacetime curvature (Misner et al
1973), encapsulating in the field equations the inherent coupling between relic GWs
and the Universal matter content; the latter being responsible for the background
gravitational field (Grishchuk and Polnarev 1980).

A GW background of cosmological origin is expected to be isotropic, stationary
and unpolarized (Allen 1997). Therefore, its main property will be its frequency
spectrum. Along with the propagation of relic GWs, the Universe experiences a
number of (phase) transitions, mostly due to non-gravitational physics. The question
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that arises now is, if there are any imprints (of the various modifications in the
spacetime dynamics) left on the spectrum of the CGWs during their journey from
the inflationary epoch to the matter-dominated era. Provided that these imprints
can be detected at the present epoch, CGWs would be a powerful tool to study
Universal evolution.

The intensity of a GW background is characterized by the dimensionless quantity
(Carr 1980)

Ωgw =
1

ρc

dρgw

d(lnk)
=
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k
d

dk
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0
k4 |α(k, t)|2 dk

]
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where, ρgw is the energy-density of the GW background, spatially averaged over
several wavelengths, α(k, t) is the corresponding time-dependent amplitude, k is the
coordinate wave-number and ρc is the present value of the critical energy-density for
closing the Universe. In order to understand the effect of the GW background on a
detector, we need to think in terms of amplitudes and therefore, it is convenient to
express the logarithmic spectrum (1) in the form

dρgw

d(lnk)
=

1

2G
k2 δ2

h(k) (2)

where,
δ2
h(k) = k3 |α(k, t)|2 (3)

is the power spectrum (Mukhanov et al 1992), also referred to as the characteristic
amplitude h2

c(k) (Maggiore 2000), which is a dimensionless quantity representing a
characteristic value of the amplitude per unit of a logarithmic frequency interval.
Clearly, in order to determine the spectrum of relic gravitational radiation one should
first determine α(k, t) in curved spacetime. The safest way to do so, is to evaluate
a family of solutions to the corresponding equation of propagation.

In the present article we consider a plane polarized gravitational wave (in the
transverse-traceless gauge) propagating in a spatially flat Friedmann - Robertson -
Walker (FRW) model. This model appears to interpret adequately the observational
data related to the known thermal history of the Universe and therefore, it seems
to be the most appropriate candidate for the curved background needed for this
study. Accordingly, we arrive at a simple formula for the power spectrum of relic
gravitational radiation, which relates the spectral index with the evolutionary period
at which a CGW has entered the horizon.

2. Gravitational waves in curved spacetime

The far-field propagation (i.e. away from the source) of a weak CGW (|hµν | ¿
1) in a curved, non-vacuum spacetime, is determined by the differential equations
(Misner et al 1973)

h ;α
µν;α − 2Rαµνβhαβ = 0 (4)
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under the gauge choice

(hαβ − 1

2
gαβh);β = 0 (5)

which brings the linearized Einstein equations into the form (4). In Eqs (4) and (5),
Greek indices refer to the four-dimensional spacetime, Rαµνβ is the Riemann curva-
ture tensor of the background metric, h is the trace of hµν and the semicolon denotes
covariant derivative. A linearly polarized plane GW propagating in a spatially flat
FRW cosmological model, is defined by the expression (Allen 1997)

ds2 = c2dt2 −R2(t)(δik + hik)dxidxk (6)

where, Latin indices refer to the three-dimensional spatial section, δik is the Kro-
necker symbol and the dimensionless scale factor R(t) is a solution to the Fried-
mann equations, with mater-content in the form of a perfect fluid. Introducing the
so-called conformal time coordinate, as

η =
∫ dt

R(t)
, 0 < η < ∞ (7)

the CGW equation of propagation reads (Grishchuk 1975)

h′′ik + 2
R′

R
h′ik + δlmhik,lm = 0 (8)

where, a prime denotes differentiation with respect to η and the comma denotes
spatial derivative. To decompose Eq (8), we represent the metric corrections hik in
the form

hik(η, xj) = α(k, η) εik eıkjxj

=
h(η)

R(η)
α εik eıkjxj

(9)

where, h(η) is the time-dependent part of the modes, kj is the co-moving wave-
vector, α is the dimensionless amplitude of the CGW and εik is the corresponding
polarization tensor. Combination of Eqs (8) and (9) results in a differential equation
for the evolution of the time-dependent part of the modes

h′′ + (k2c2 − R′′

R
)h = 0 (10)

To solve Eq (10), one needs an evolution formula for the cosmological model un-
der consideration. In terms of the conformal time, the spatially flat FRW model
considered, is a solution to the Friedmann equation

(
R′

R2
)2 =

8πG

3
ρ(η) (11)

with matter-content in the form of a perfect fluid, Tµν = diag(ρc2,−p,−p,−p),
which obeys the conservation law

ρ′ + 3
R′

R
(ρ +

1

c2
p) = 0 (12)
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and the equation of state

p = (
m

3
− 1) ρc2 (13)

where, ρ(η) and p(η) represent the matter density and the pressure, respectively.
The linear equation of state (13) covers most of the matter-components considered
to drive the evolution of the Universe, such as quantum vacuum (m = 0), gas of
strings (m = 2), dust (m = 3), radiation (m = 4) and Zel’dovich ultra-stiff matter
(m = 6). For each component, the continuity equation (12) yields

ρ =
Mm

Rm
(14)

where, Mm is an integration constant, representing the total density attributed to
the m−th component. On the other hand, a mixture of these components obey
(Bleyer et al 1991)

ρ =
∑
m

Mm

Rm
(15)

where, now, Eq (12) holds for every matter-component separately. In this case,
Mm represent the amount of the m−th component in the mixture and may vary
asymptotically. Accordingly, for Mm → ∞, the m−th component dominates over
the others, while, for Mm → 0, the m−th component is negligible in the composition
of the mixture.

3. The power spectrum of relic gravitational radiation

In the case of an one-component fluid, the Friedmann equation reads

R
m
2
−2 R′ = (

8πG

3
Mm)1/2 (16)

admitting two families of exact solutions:

• For the gas of strings (m = 2)

R(η) ∼ exp(

√
8πG

3
M2 η) (17)

• For all the other types of matter-content (m 6= 2)

R(τ) = (
τ

τm

)
2

m−2 (18)

where, the time-parameter τ is linearly related to the corresponding conformal
one, by τ = m−2

2
η and we have set τm = (8πG

3
Mm)−1/2. Notice that, for m = 0

(De Sitter inflation) and 0 < η < ∞, one obtains −∞ < τ < 0.

In accordance, we obtain two families of solutions regarding the temporal evolu-
tion of a CGW in curved spacetime:
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• Inserting Eq (17) into Eq (10) we obtain the temporal evolution of a CGW in
a string-dominated Universe

h′′ + (k2c2 − 8πG

3
M2)h = 0 ⇒ h2(k, η) =

√
η H

(1,2)
1/2 (ωη) (19)

where, H
(1,2)
1/2 denotes a linear combination of the Hankel’s functions of the first

and the second kind, of order 1/2 and

ω2 = k2c2 − 8πG

3
M2 (20)

is the constant frequency of the CGW.

• Similarly, inserting Eq (18) into Eq (10) one obtains the temporal evolution
of a CGW within the context of the inflationary and/or the standard model
scenario

h′′ + (k2
∗c

2 − 2[
4−m

(m− 2)2
]

1

τ 2
)h = 0 ⇒ hm(k∗, τ) =

√
τ H

(1,2)
|ν| (k∗cτ) (21)

where, in this case, a prime denotes derivative with respect to τ , k∗ = 2
m−2

k,
so that k∗cτ = kcη and the Hankel’s functions order is

ν =
1

2
(
m− 6

m− 2
) (22)

(e.g. see Gradshteyn and Ryzhik 1965, Eq 8.491.5, p. 971). Therefore, differ-
ent evolutionary periods admit different Hankel’s functions.

With these solutions at hand, we may now examine the resulting power spec-
trum which can reveal a great deal of information on the physical conditions of the
Universe at the time the CGWs have entered the horizon, i.e when the physical
wavelength (λph) of the wave becomes of the order of the Universal circumference

λph ≤ 2π`H ⇒ 2π

k
R(τ) ≤ 2π

c

H
⇒ k∗cτ ≥ 1 ⇒ kcη ≥ 1 (23)

Since a string-dominated Universe does not seem likely (Hindmarsh and Kibble
1995), in what follows, we confine ourselves within the inflationary and/or the stan-
dard model scenario, in which, the power spectrum is written in the form

δh ∼ k3/2 τ ν
∣∣∣H(1,2)

|ν| (k∗cτ)
∣∣∣ (24)

We define the spectral index as

n =
k

δh(k)

dδh(k)

dk
(25)

and taking into account the asymptotic properties of the Hankel functions (Lebedev
1972), we consider the following cases:
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• A CGW is well-outside the horizon: In this case, we have λph À `H and
k∗cτ → 0. Accordingly, the power spectrum results in

δh(k) ∼ k
3
2
−|ν| τ ν−|ν| (26)

and the spectral index is given by

n =
3

2
− |ν| (27)

In the case of inflationary expansion (m = 0), as well as during the matter-
dominated epoch (m = 3) we obtain n = 0, i.e. the CGW spectrum is flat, as
it has already been predicted by many authors (e.g. see Mukhanov et al 1992,
Allen 1997). On the other hand in the radiation-dominated epoch (m = 4)
one is left with the Harrison - Zel’dovich slope, where n = 1 and δh ∼ k.

• A CGW is well-inside the horizon: In this case, λph ¿ `H and k∗cτ → ∞.
Accordingly, the power spectrum reads

δh ∼ k τ ν− 1
2 (28)

and the spectral index is constant (n = 1) for every m, yielding the Harrison
- Zel’dovich slope (a not unexpected result) (e.g. see Mukhanov et al 1992).

• Finally, when the CGW enters the horizon one admits λph ' `H ⇒ k∗cτ ' 1,
thus obtaining

δh ∼ k
3
2
−ν

∣∣∣H(1,2)
|ν| (1)

∣∣∣ (29)

In this case, the Hankel’s function is independent of k and, therefore, the
spectral index reads

n =
m

m− 2
(30)

Eq (30) decomposes to

– n = 0 (a flat spectrum) in the inflationary regime (m = 0)

– n = 2 (δh ∼ k2) in the radiation-dominated epoch (m = 4)

– n = 3 (δh ∼ k3) in the matter-dominated epoch (m = 3)

Therefore, knowledge of the spectral index allows us to determine the value
of m which, in turn, determines the form of the matter-energy content of the
Universe at the time the CGW has entered the horizon

m =
2n

n− 1
(31)

In this sense, a possible detection of CGWs can result in a powerful tool for
exploring the Universe, even more powerful than the CMRB.
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