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Abstract

A novel approach in the semiclassical interaction of gravity with a quan-
tum scalar field is considered, to guarantee the renormalizability of the energy-
momentum tensor in a multi-dimensional curved spacetime. According to it, a
self-consistent coupling between the square curvature term R2 and the quan-
tum field is introduced. The subsequent interaction discards any higher-order
derivative terms from the gravitational field equations, but, in the expense,
it introduces a geometric source term in the wave equation for the quantum
field. Unlike the conformal coupling case, this term does not represent an
additional ”mass” and, therefore, the quantum field interacts with gravity in
a generic way and not only through its mass (or energy) content.
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1. Introduction

In the last few decades there has been a remarkable progress in understanding
the quantum structure of the non-gravitational fundamental interactions (Nanopou-
los 1997). On the other hand, so far, there is no quantum framework consistent
enough to describe gravity itself (Padmanabhan 1989), leaving string theory as the
most successful attempt towards this direction (Green et al 1987, Polchinsky 1998,
Schwarz 1999). Within the context of General Relativity (GR), one usually resorts
to perturbations’ approach, where string theory predicts corrections to the Einstein
equations. Those corrections originate from higher-order curvature terms arising in
the string action, but their exact form is not yet being fully explored (Polchinsky
1998).
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A self-consistent mathematical background for higher-order gravity theories was
formulated by Lovelock (1971). According to it, the most general gravitational
Lagrangian reads

L =
√−g

n/2∑

m=0

λmL(m) (1)

where λm are constant coefficients, n denotes the spacetime dimensions, g is the
determinant of the metric tensor and L(m) are functions of the Riemann curvature
tensor Rijkl and its contractions Rij and R, of the form

L(m) =
1

2m
δj1...j2m
i1...i2m

Ri1i2
j1j2 ...Ri2m−1i2m

j2m−1j2m
(2)

where Latin indices refer to the n-dimensional spacetime and δj1...j2m
i1...i2m

is the gen-
eralized Kronecker symbol. In Eq (2), L(1) = 1

2
R is the Einstein-Hilbert (EH)

Lagrangian, while L(2) is a particular combination of quadratic terms, known as the
Gauss-Bonnett (GB) combination, since in four dimensions it satisfies the functional
relation

δ

δgµν

∫ √−g
(
R2 − 4RµνRµν +RµνκλRµνκλ

)
d4x = 0 (3)

corresponding to the GB theorem (Kobayashi and Nomizu 1969). In Eq (3), Greek
indices refer to four-dimensional coordinates. Introducing the GB term into the
gravitational Lagrangian will not affect the four-dimensional field equations at all.
However, within the context of the perturbations’ approach mentioned above, the
most important contribution comes from the GB term (Mignemi and Stewart 1993).
As in four dimensions it is a total divergence, to render this term dynamical, one
has to consider a higher-dimensional background or to couple it to a scalar field.

The idea of a multi-dimensional spacetime has received much attention as a can-
didate for the unification of all fundamental interactions, including gravity, in the
framework of super-gravity and super-strings (Applequist et al 1987, Green et al
1987). In most higher-dimensional theories of gravity, the extra dimensions are as-
sumed to form, at the present epoch, a compact manifold (internal space) of very
small size compared to that of the three-dimensional visible space (external space)
and therefore they are unobservable at the energies currently available (Green et al
1987). This so-called compactification of the extra dimensions may be achieved, in
a natural way, by adding a square-curvature term (RijklRijkl) in the EH action of
the gravitational field (Müller-Hoissen 1988). In this way, the higher-dimensional
theories are closely related to those of non-linear Lagrangians and their combination
probably yields a natural generalization of GR.

In the present paper, we explore this generalization, in view of the renormalizable
energy-momentum tensor which acts as the source of gravity in the (semiclassical)
interaction between the gravitational and a quantum matter field. In particular:

We discuss briefly how GR is modified by the introduction of the renormalizable
energy-momentum tensor first recognized by Calan et al (1970), on the rhs of the
field equations. Introducing an analogous method, we explore the corresponding
implications as regards a multi-dimensional higher-order gravity theory. We find
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that, in this case, the action functional, describing the semi-classical interaction of
a quantum scalar field with the classical gravitational one, is being further modified
and its variation with respect to the quantum field results in an inhomogeneous
Klein-Gordon equation, the source term of which is purely geometric (∼ R2).

2. A Quadratic Interaction

Conventional gravity in n−dimensions implies that the dynamical behavior of the
gravitational field arises from an action principle involving the EH Lagrangian

LEH =
1

16πGn

R (4)

where, Gn = GVn−4 and Vn−4 denotes the volume of the internal space, formed by
some extra spacelike dimensions. In this framework, we consider the semi-classical
interaction between the gravitational and a massive quantum scalar field Φ(t, ~x)
to the lowest order in Gn. The quantization of the field Φ(t, ~x) is performed by
imposing canonical commutation relations on a hypersurface t = constant (Isham
1981)

[Φ(t, ~x) , Φ(t, ~x′)] = 0 = [π(t, ~x) , π(t, ~x′)]

[Φ(t, ~x) , π(t, ~x′)] = iδ(n−1) (~x− ~x′) (5)

where, π(t, ~x) is the momentum canonically conjugate to the field Φ(t, ~x). The
equal-time commutation relations (5) guarantee the local character of the quantum
field theory under consideration, thus attributing its time-evolution to the classical
gravitational field equations (Birrell and Davies 1982).

In any local field theory, the corresponding energy-momentum tensor is a very
important object. Knowledge of its matrix elements is necessary to describe scat-
tering in a relatively-weak external gravitational field. Therefore, in any quantum
process in curved spacetime, it is desirable for the corresponding energy-momentum
tensor to be renormalizable; i.e. its matrix elements to be cut-off independent (Bir-
rell and Davies 1982). In this context, it has been proved (Callan et al 1970) that the
functional form of the renormalizable energy-momentum tensor involved in the semi-
classical interaction between the gravitational and a quantum field in n−dimensions,
should be

Θik = Tik − 1

4

n− 2

n− 1

[
Φ2

; ik − gik2Φ2
]

(6)

where, the semicolon stands for covariant differentiation (∇k), 2 = gik∇i∇k is the
d’ Alembert operator and

Tik = Φ,iΦ,k − gikLmat (7)

is the conventional energy-momentum tensor of an (otherwise) free massive scalar
field, with Lagrangian density of the form

Lmat =
1

2

[
gikΦ,iΦ,k −m2Φ2

]
(8)
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It is worth noting that the tensor (6) defines the same n−momentum and Lorentz
generators as the conventional energy-momentum tensor.

It has been shown (Callan et al 1970) that the energy-momentum tensor (6) can
be obtained by an action principle, involving

S =
∫

[f(Φ)R+ Lmat]
√−gdnx (9)

where, f(Φ) is an arbitrary, analytic function of Φ(t, ~x), the determination of which
can be achieved by demanding that the rhs of the field equations resulting from Eq
(9) is given by Eq (6). Accordingly,

δS

δgik
= 0 ⇒Rik − 1

2
gikR = −8πGnΘik = − 1

2f
(Tik + 2f; ik − 2gik2f) (10)

To lowest order in Gn, one obtains (Callan et al 1970)

f(Φ) =
1

16πGn

− 1

8

n− 2

n− 1
Φ2 (11)

Therefore, in any linear Lagrangian gravity theory, the interaction between a quan-
tum scalar field and the classical gravitational one is determined through Hamilton’s
principle involving the action scalar

S =
∫ √−g

[
(

1

16πGn

− 1

8

n− 2

n− 1
Φ2)R+ Lmat

]
dnx (12)

On the other hand, both super-string theories (Candelas et al 1985, Green et al
1987) and the one-loop approximation of quantum gravity (Kleidis and Papadopou-
los 1998), suggest that the presence of quadratic terms in the gravitational action is a
priori expected. Therefore, in connection to the semi-classical interaction previously
stated, the question that arises now is, what the functional form of the corresponding
renormalizable energy-momentum tensor might be, if the simplest quadratic curva-
ture term, R2, is included in the description of the classical gravitational field. To
answer this question, by analogy to Eq (9), we may consider the action principle

δ

δgik

∫ √−g
[
f1(Φ)R+ αf2(Φ)R2 + Lmat

]
dnx = 0 (13)

where, both f1(Φ) and f2(Φ) are arbitrary, polynomial functions of Φ. Eq (13) yields

Rik − 1

2
gikR = − 1

2F

[
Tik + 2F; ik − 2gik2F + αgikf2(Φ)R2

]
(14)

where, the function F stands for the combination

F = f1(Φ) + 2αRf2(Φ) (15)

For α = 0 and to the lowest order in Gn (but to every order in the coupling constants
of the quantum field involved), we must have

Rik − 1

2
gikR = −8πGnΘik (16)
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where, Θik [given by Eq (6)] is the renormalizable energy-momentum tensor first
recognized by Calan et al (1970). In this respect, we obtain f1(Φ) = f(Φ), i.e. a
function quadratic in Φ [see Eq (11)]. Furthermore, on dimensional grounds regard-
ing Eq (14), we expect that

F ∼ Φ2 (17)

and, therefore, αRf2(Φ) ∼ Φ2, as well. However, we already know that R ∼ [Φ], as
indicated by Whitt (1984), something that leads to f2(Φ) ∼ Φ 1 and in particular,

F (Φ) =
1

16πGn

− 1

8

n− 2

n− 1

[
Φ2

]
+ 2αRΦ (18)

In Eq (18), the coupling parameter α encapsulates any arbitrary constant that may
be introduced in the definition of f2(Φ). Accordingly, the action describing the semi-
classical interaction of a quantum scalar field with the classical gravitational one up
to the second order in curvature tensor, is being further modified and is written in
the form

S =
∫ √−g

[
(

1

16πGn

− 1

2
ξnΦ2)R+ αR2Φ + Lmat

]
dnx (19)

where

ξn =
1

4

n− 2

n− 1
(20)

is the so-called conformal coupling parameter (Birrell and Davies 1982). In this case,
the associated gravitational field equations (14) result in

Rik − 1

2
gikR = −8πGn (Θik + αSik) (21)

where
Sik = gik R2Φ (22)

The rhs of Eq (21) represents the ”new” renormalizable energy-momentum tensor.
Notice that, as long as α 6= 0, this tensor contains the extra ”source” term Sik. In
spite the presence of this term, the generalized energy-momentum tensor still re-
mains renormalizable. This is due to the fact that, the set of the quantum operators
{Φ, Φ2, 2Φ} is closed under renormalization, as it can be verified by straightforward
power counting (see Callan et al 1970).

Eq (22) implies that the quadratic curvature term (i.e. pure global gravity) acts
as a source of the quantum field Φ. Indeed, variation of Eq (19) with respect to
Φ(t, ~x) leads to the following quantum field equation of propagation

2Φ + m2Φ + ξnRΦ = αR2 (23)

that is, an inhomogeneous Klein-Gordon equation in curved spacetime. It is worth
pointing out that, in Eq (19), the generalized coupling constant α remains dimen-
sionless (and this is also the case for the corresponding action) only as long as

n = 6 (24)

1In fact, [R] ∼ [Φ]
4

n−2 and, therefore, f2 ∼ Φ2 n−4
n−2 . In order to render the coupling constant α

dimensionless, one should consider n = 6. Hence, f2 ∼ Φ only in six dimensions.
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thus indicating the appropriate spacetime dimensions for the semi-classical theory
under consideration to hold, without introducing any additional arbitrary length
scales.

Summarizing, a self-consistent coupling between the square curvature term R2

and the quantum field Φ(t, ~x) should be introduced in order to yield the ”correct”
renormalizable energy-momentum tensor in non-linear gravity theories. The sub-
sequent quadratic interaction discards any higher-order derivative terms from the
gravitational field equations, but it introduces a geometric source term in the wave
equation for the quantum field. In this case, unlike the conventional conformal cou-
pling (∼ RΦ2), the quantum field interacts with gravity not only through its mass
(or energy) content (∼ Φ2), but, also, in a more generic way (R2Φ).
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