ANISOTROPIC NULL STRING COSMOLOGIES

Ioannis Giannakis^{a,b}, K. Kleidis^c, A. Kuiroukidis^c and D. Papadopoulos^c [†]

^(a) Department of Physics, New York University 4 Washington Pl., New York, NY 10003

^(b) Physics Department, The Rockefeller University 1230 York Avenue, New York, NY 10021-6399

^(c)Department of Physics Section of Astrophysics, Astronomy and Mechanics Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece

Abstract

We study string propagation in an anisotropic, cosmological background. We solve the equations of motion and the constraints by performing a perturbative expansion of the string coordinates in powers of c^2 , the world-sheet speed of light. To zeroth order the string is approximated by a tensionless string (since c is proportional to the string tension T). We obtain exact, analytical expressions for the zeroth and the first order solutions and we discuss some cosmological implications.

[†] e-mail: giannak@theory.rockefeller.edu, kleidis@astro.auth.gr, kuirouki@astro.auth.gr, papadop@astro.auth.gr