
1

Embedded Systems

Programming and Architectures

Dr John Kalomiros

Assis. Professor

Department of Post Graduate studies in
Communications and Informatics

Lecture No 9 : Programming in C
the PIC 16F series

2

Programming embedded systems in C language:
An introduction using the PIC16F series

� With increasingly complicated programs, it becomes more difficult to apply
assembler programming:

� Difficult debugging

� Difficult flow control

� Difficult to implement mathematical tasks

A number of high-level languages are used in ES development: BASIC,
PASCAL and C

In this lesson we introduce the Hi-Tech ANSI-C compiler which is bundled
with MPLAB and fully supports the 16F midrange MCUs.

There are other compilers too, like the Microchip C18 for the 18F series.
You can find a free student edition for some of them.

3

C is a HLL that remains close to hardware

� C language is a well defined standard established throughout the computer

industry. It is used for development in many platforms including the desktop

computer.

� It is a portable language that allows transferring programs from one

computer to the other with minimal modifications. In Embedded Systems,

hardware-specific programming is MCU dependent, while the main logic

remains the same when migrating from one processor to the other.

� Use of C is possible in ES programming because modern MCUs are

equipped with larger data and program memories.

� C programming is easier. However, assembly programming is more efficient

and hardware-friendly.

4

In this course we assume that the audience is acquai nted
with C language…

…However, we provide here some information and a PIC-specific

textbook, for those who need to refresh their memory…

� Download the e-book: PIC micro MCU C by Nigel Gardner

� You are also expected to study chapter 14 (Introducing C) of Designing

Embedded Systems with PIC microcontrollers by Tim Wilmshurst, which is
core literature for this course.

� You may also refer to documents PIC C Lite User’s Guide, by Hi-Tech

software (PICC_lite.pdf) and Hi-Tech C for 10/12/16 MCUs User’s Guide,

by Microchip.

5

Choose the right compiler in MPLAB IDE

In Step two of the
project wizard select
the Hi-TECH Universal
ToolSuite

With File-New write a
program in C and save
as xxx.c file in the
project directory

6

Components of a C program

� Declarations create program elements, like variables and functions
and indicate their properties. Example:

unsigned char counter;

� Definitions establish the content of variables or functions and allocate
memory

� Statements perform mathematical or logical operations and establish
program flow

PORTB=0xAF;

� Code blocks: declarations and statements grouped together and contained
within curly brackets

While(1)

{

…statements…

}

� Space and comments /* comment goes here */ or // rem out line like this
also: leave empty space for readability

7

Example of a very simple program in C for midrange PIC MCUs

/* READS PORTD and OUTPUTS READING+1 TO PORTB */

#include <htc.h> //or #include "pic1687x.h" for PIC16F877

/*Set CONFIGURATION BITS in code */

__CONFIG (UNPROTECT & PWRTDIS & WDTDIS & XT & LVPDI S);

unsigned int z=0; //variable declarations. Discuss the use of int!

//main function

void main (void)

{

TRISD=0xFF; /* Set PORTD as input*/

TRISB=0x00; /* Set PORTB as output */

PORTB=0x00; /* Clear PORTB */

while(1)

{

z=PORTD;

PORTB=z+1;

}

}

8

C data types in MPLAB PIC C Hi-TECH compiler

NOTE: See individual C compiler doc for actual data-types and numerical ranges

9

Radix formats for handling numbers

10

Preprocessor directives

The preprocessor is automatically invoked as the first step in compiling

a program.

#include, #define and __CONFIG() are preprocessor directives.

The #include directive includes the code of external files in the program.

Commonly, we include header files that contain function prototypes and

definitions i.e.

#include <math.h> (it contains many mathematical functions)

#include <stdio.h> (it contains I/O functions like printf and putc) or

#include “my_header_file.h” (for a user defined header file)

(angled brackets <> tell the preprocessor to look into predefined “include”

directories for the file. Quotation marks “ ” direct the preprocessor to look into

current directory for the file).

11

Preprocessor directives (continued)

Another category of header files is processor-specific files.
They contain declarations and definitions for SFRs and their bits:

htc.h is a necessary header file that contains declarations and definitions for
hardware elements for all PIC16F MCUs. Always begin your code with the

directive:

#include <htc.h>

__CONFIG(arg1, arg2,…) is a preprocessor macro that writes 16 bits into the
configuration word. It takes arguments defined in header file htc.h

A constant can be declared using the #define directive:
#define <label> value, for example:

#define pi 3.1415926

12

The C function

C programs are structured from functions. All programs
have at least one function, the “main” function.

13

Working with user-defined functions: example

/*Example functions with HITECH Compiler for 16F se ries MCUs.

BLINK THE LED USING A DELAY FUNCTION */

#include <htc.h>

/*CONFIGURATION BITS */

__CONFIG(UNPROTECT & PWRTDIS & WDTDIS & XT & LVPDIS);

//function declarations

void my_delay (unsigned int); //function prototype

void initialize (void); //function prototype

//global variable declaration

unsigned int z=0;

//main function

void main(void)

{

initialize(); //call user function for port initialization

while(1)

{

z=PORTD; //Read PORTD

PORTB=z; //Output motive to PORTB

my_delay(20000); //call user function for 240ms time delay

PORTB=~z; //Toggle PORTB

my_delay(20000);

}

}

14

Working with user functions (example continued)

//user functions definitions

void initialize(void) //This is a cute way to perform all SFR init in one f

{

TRISD=0xFF; /* Set PORTD as input*/

TRISB=0x00; /* Set PORTB as output */

PORTB=0b00000000; /* Initialize PORTB with zeroes */

}

/*The following function produces approx. 200ms del ay on a 4MHz processor*/

//delays are very important for display or button d ebouncing

void my_delay(unsigned int count_delay) //on PICC and with fosc=4MHz

{

unsigned int counter=0; //declaration of local variable

while(counter<count_delay) //count_delay=3000 is 36msec, 20000 is 240msec

{

counter=counter+1;

}

}

15

More on functions
Function prototypes: A declaration which informs the compiler of the
type of the function’s arguments and its return type:

char find_min (int , char *)

Function definitions

char find_min (char N, char *my_pointer) //find min among array elements

{

for (index=0; index<N; index++)

{

if (*(my_pointer+index)<min) //compare current element with min

{

min = *(my_pointer+index); //update min

}

}

return min;

}

16

More on functions (continued)

How to call function find_min:

min = find_min (N, my_pointer);

Beside user functions, there are also compiler built-in functions grouped in

LIBRARIES

A library is a collection of functions grouped for reference and ease of linking.

The HI-TECH compiler comes equipped with libraries for software and hardware

tasks in the lib directory. They can be linked directly into an application using the
MPLINK linker. Each function in a collection has an associated header file:

#include <math.h>

double cos (double f)

double sqrt (double f)

Mainly mathematical, string and i/o operations are supported. In other compilers
peripheral tasks are also implemented using built-in functions:

#include <adc.h>

void ConvertADC(void) //convert analog sample to digital

17

Just to refresh your memory

Control structures: for loop, while loop, if

for (index=0; index<10; index++) // for (initialization; conditional_test; increment)

{

sum=sum + matrix [index]; //statements;

}

while (expression) //This is how we implement the super-loop in embedded systems

{

statements; //you may have conditional break here;

{

if (*(my_pointer+index2)<min) // if (expression)
{
min=*(my_pointer+index2); // statements;
}

…however, if your memory is blank, this is your last chance to fill the gap…

Remember: if you don’t find C, then C is going to find you

18

Just to refresh your memory (continued)

if (expression)

{

statements;

}

else

{

statements;

}

if-else, switch

19

C and the embedded environment:
Working with SFR bits, buttons and diagnostics

Code elements particular to MCU programming are:
1. Processor-specific header files which define mnemonic names on top of SFR

memory locations and their bits (see for example file htc.h). SFRs are referred to with their

standard names, as defined by Microchip data-books. Example:

OPTION = 0b10000111; PORTB=0b01011100; INTCON=0b01000000;

SFR bit names depend on the compiler. Hi-Tech compilers name port bits as:
RD0(meaning PORTD bit 0), RB4 (meaning PORTB bit 4) etc. Flags and enable

bits are bit variables defined with their original names, like T0IF or GIE.

2. Delay functions depend on processor clock and are very important for data display and
push-button debouncing. You can make your own or look for a built-in function in lib.

3. Configuration bits are processor specific and are defined using special macros

4. Processor peripherals like timers, interrupts, PWMs, ADCs etc. are often controlled by

specific hardware-oriented functions providing some hardware abstraction, otherwise they

have to be operated working immediately with their registers, flags and enable bits, as we

do in assembly.

20

C and the embedded environment (continued):
Working with SFR bits and buttons

#include <htc.h>
#define _XTAL_FREQ 4000000 //define the XT frequency
//don’t forget function prototypes!
unsigned char z=1; //variable declarations
void main(void)
{

initialize(); //call user function for port initialization
diagnostic(); //call user function for diagnostic test
while(1)
{

RB4=z;
while(RD0==1) //pin RD0 is 1 when not pressed
{

//Wait for press
}

__delay_ms(30); //debounce using library delay function
while(RD0==0)
{

//Wait for release
}

__delay_ms(30); //debounce using library delay function
z=~z; //TOGGLE RB4 LED!

}
}

21

C and the embedded environment (continued):
Working with diagnostics

//Function diagnostic
//blinks the LEDS of PORTB 10 times
void diagnostic(void)
{
unsigned char id;

for(id=0; id<10; id++)
{
PORTB=0xAA;
__delay_ms(250); //delay with user function
PORTB=0x55;
__delay_ms(250); //delay with user function
}
PORTB=0x00;

}

void initialize(void) //PORT initialization function
{

TRISD=0xFF; /*Set PORTD as input*/
TRISB=0x00; /* Set PORTB as output */
PORTB=0x00; /*Initialize PORTB with zeroes */

}

22

Working with arrays

An array is a list of related variables of the same data type. Any data
type can be used. Array elements are stored in consecutive memory
locations.
Array declaration:

unsigned char matrix1[10];
//matrix1 has 10 elements of type char

We access array elements using an index or index-variable, starting

from 0.

The name of an array is set equal to the address of the initial element.

A string is defined as a null-terminated character array.

23

Working with arrays (example)

//SUM MATRIX ELEMENTS

#include <htc.h> //or #include "pic1687x.h" for PIC16F877

/*Set CONFIGURATION BITS in code*/

__CONFIG (UNPROTECT & PWRTDIS & WDTDIS & XT & LVPDI S);

void initialize (void); //user function prototype

void diagnostic (void); //user function prototype

//variable and array declarations

unsigned int index, sum;

int matrix[10] = {10, 2, 8, 9, 14, 1, 7, 6, 5, 3};

//main function

void main (void)

{

initialize(); //TRISB=0x00, TRISD=0xFF, PORTB=0

index=0;

sum=0;

for (index=0; index<10; index++)

{

sum=sum + matrix [index];

}

PORTB=sum; //Output sum

while(1) { //endless loop }

}

24

Using pointers

Instead of specifying a variable by name, we can specify its address. This

address is called a pointer. In other words, a pointer is a memory location

(variable) that holds the address of another memory location:

my_pointer=&my_variable; //note the use of unary operator &

Then, variable my_pointer holds the address of variable my_variable

Reciprocally, we can use the * operator in order to “dereference” a pointer:

my_variable=*my_pointer;

*my_pointer is read as “the value pointed to by my_pointer ”.

A pointer is declared by the data type it points to:

int *my_pointer;

indicates that my_pointer points to a variable of type int.

char *my_pointer=&my_array[0];

25

Find the minimum among matrix elements
//Fill array with values using PORTD and find minim um among matrix elements

#include <htc.h>

//Define constants

#define _XTAL_FREQ 4000000 //define the XT frequency for __delay_ms()

#define _Number 5 //define number of elements in the matrix

__CONFIG(UNPROTECT & PWRTEN & WDTDIS & XT & LVPDIS) ; /*Set CONFIGURATION BITS*/

//user function prototypes

void initialize (void); //Set PORTB as output, PORTD as Input and RC0 as in put

void diagnostic (void); //Same as in previous code

void input_vals (char);

char find_min (char, char *);

//variable declarations

char my_array[_Number];

char min=255; //min initially acquires the maximum value possible

unsigned char N=_Number, index=0;

char *my_pointer=&my_array[0];

void main(void) //main function

{

initialize(); //call user function for port initialization

diagnostic(); //call user function for diagnostic test

input_vals(N); //call user function to input values

min=find_min(N, my_pointer); //call user function for min value

PORTB=min; //output min value

while(1)

{ //endless loop. Execution is trapped here

}

}

26

Important user functions: input_vals and find_min (co ntinued)

void input_vals (char N) //function to input values from PORTD
{
unsigned char index1=0;

for (index1=0; index1<N; index1++)
{

while(RC0==0)
{ //Wait until button pressed
}
__delay_ms(30); //debounce
my_array[index1]=PORTD; //Transfer PORTD to array
PORTB=my_array[index1]; //Show input value on PORTB
while(RC0==1)
{ //Wait until button released
}
__delay_ms(30); //debounce

}
}
//function to calculate the minimum value: pass poi nter to function
char find_min (char N, char *my_pointer)
{
unsigned char index2=0;
for(index2=0; index2<N; index2++)

{
if (*(my_pointer+index2)<min) //compare current element with min
{
min=*(my_pointer+index2); //update min
}

}
return min;
}

27

Build the project and View-Memory Usage Gauge

The gauge presents program and data memory usage for our code

When the compiler is best optimized, machine code is as compact
as possible. This is a good reason to give some money and buy a
compiler (~200€).

(You may even find it entertaining to stage compiler games!)

28

Surprise! Project No 6:

Write a C application that performs the following successive tasks:

1. Use DIP switches on PORTB in order to input ten 8-bit integers into an
array my_values[10] . Use a push-button on RC0 to trigger each reading.

Write code to debounce, each time the button is pushed or released.

2. Sort the array of values starting from minimum.

3. Display the values in serial order using again RC0 push-button to trigger
the display of successive array elements.

Along with the code please hand-in a circuit design of the application.

29

Working in C with timers - Programming Timer0

#include <htc.h>

/*Set CONFIGURATION BITS in code*/

__CONFIG(UNPROTECT & PWRTEN & WDTDIS & XT & LVPDIS) ;

int Count = 0; //variable declarations

//main function

void main()

{

TRISB = 0b00000000; // PORTB is output

PORTB = 0b00000000; // clear PORTB

TMR0 = 0; // Intialize TMR0 with 0

OPTION = 0b10000111; // select internal instruction clock

// connect prescaler,

// Prescaler = 1:256

while(1)

{ // (256 x 256)/1MHz = 65536 µs

while(!T0IF); // delay until overflow (upon OVF T0IF=0, TMR0=0)

T0IF = 0; // Clear flag

Count++;

if(Count == 15)

{ // 65536 x 15 = 0,983s

Count = 0;

PORTB = ~PORTB; // Toggle bits of PORTB

}

}

}

30

Working in C with interrupts –a typical main function

//This is a test program for interrupts in C langua ge.

//Interrupt is produced by TIMER0

#include <htc.h>

/*Set CONFIGURATION BITS in code*/

__CONFIG(UNPROTECT & PWRTDIS & WDTDIS & XT & LVPDIS);

void initialize (void); //function prototype

unsigned char counter; //defines a global variable

void main (void) //main function

{

counter=0;

initialize(); //interrupt initialization function

while(1) //endless loop

{

PORTB=counter; //count interrupts on PORTB

}

}

31

Initialization of interrupts and a simple ISR

void initialize (void)

{

TRISB=0b00000000; // PORTB output

OPTION=0b00001000; // connect prescaler, divide by 2

T0IE=1; // Enable Timer0 interrupts

GIE=1; // or ei();

TMR0=0; // for simulation purposes

}

//Interrupt service routine

interrupt Timer0_ISR(void)

{

counter++; // increment counter upon interrupt

if(T0IE && T0IF) //If source of interrupt is Timer0 AND interrupt
occurred

{

counter++; // increment counter

T0IF=0; // clear Timer0 interrupt flag

TMR0=0; // Reload TMR0

}

}

32

Surprise again! Project No 7:

Write code for an application that receives interrupts from the following two
sources: a. from pin INT (RB0) and b. from Timer0.

Timer0 produces an interrupt with frequency 25Hz. Consider external clock

frequency 4MHz.
Upon timer0 interrupt an led connected to RD0 toggles.

Upon INT interrupt an 8-bit counter is incremented and its content is displayed

on PORTC LEDs.

33

(Absolutely) required reading

1. Chapters 14, 15, 16 of Designing Embedded Systems with PIC
microcontrollers by Tim Wilmshurst.

2. Anything else you need in order to cope with the material presented in this

lecture. For example, look at the literature given in slide No 4.

