
Embedded Systems

Programming and Architectures

Dr John Kalomiros

Assis. Professor

Department of Post Graduate studies in
Communications and Informatics

Lecture No 8 : Programming timers
and interrupts in assembly

What is a timer?

1. It is a peripheral to almost every microprocessor system

2. Its functionality is based on a digital counter

3. It can be used (a) to count events or (b) to measure time
intervals with accuracy

The resolution of the timer is determined by the resolution of
the clock signal

Timer0 module in the 16F series

The counter is associated with register TMR0, which can be
written in order to load initial value. Reading TMR0 can be
translated to elapsed time.

Internal Timing issues

If external frequency is fosc, then Tosc=1/ fosc

For example with fosc=4MHz, Tosc=0,25µs

Execution of one instruction takes 4 cycles of the external clock:

fetch, decode, execute and store = 1 instruction cycle

In other words: Duration of 1 instruction cycle = 4*Tosc

For example with fosc=4MHz, 1 instruction takes 1µs

This is the internal instruction clock: fint = fosc /4

OPTION register (bank 1)

Timer0 Prescaler

The clock frequency that increments the timer can be divided by
using the prescaler. In this case PSA=0 and PS2, PS1, PS0 are
set to a dividing configuration, as above.

Except from OPTION Reg, INTCON Reg is also connected to the
function of Timer0

INTCON is in Bank 0, and controls the function of interrupt signals.

A Flag in INTCON is associated with timer0.

This is T0IF (timer0 interrupt flag) which is set when the timer

overflows.

When you load Timer0, the following series of events takes place

1. TMR0 value is incremented at each cycle of the instruction clock

(nominally after each instruction is executed, unless it is a branch instruction)

2. When the counter reaches 255 it overflows at the very next clock cycle

3. Upon overflow T0IF is set in INTCON Reg

4. If you want the timer to run again then you have to clear T0IF and reload

In order to enable the timer and have it running you need to initialize it:

1. Go to bank 1

2. Write OPTION Reg using the necessary timer and prescaler settings

3. Clear Timer0 interrupt Flag (T0IF) in INTCON Reg

4. Load the initial counting value in TMR0

How the timer delay is calculated

the time interval from loading the counter until overflow is given by the
following relation

For example: fosc= 8MHz, prescaler is 1:256

(OPTION Reg is written with 11010111)

initial TMR0 value =178

Example timer0 programming, for simulation

#include "P16F877.inc"

;initialization

Org 0 ;Reset vector

bsf STATUS, RP0 ;switch to bank 1

movlw b'11010001' ;prescaler set to division by 4

movwf OPTION_REG ;write to OPTION REG

bcf STATUS, RP0 ;return to bank 0

movlw 0F0h ;Set TMR0 to initial value 240 (decimal)

movwf TMR0

bcf INTCON, T0IF ;clear Timer 0 interrupt flag

;main loop

loop goto loop ;wait for timer overflow

end

Measure 5 sec with Timer0

suppose external crystal
with frequency fosc=8MHz

CENT holds hundredths of sec
SEC holds number of seconds

START

Initialize PORTB

for output

Increment CENT

Is SEC=5?
No Yes

Toggle LEDs

Endless

wait

Define variables

CENT 0

SEC

Initialize Timer0

and prescaler

Clear T0IF

TMR0 178

Is T0IF set?

Is CENT=100?

Clear CENT

decrement SEC

No

Yes

No

Yes

Measure 5 sec with Timer0

� #include "P16F877.INC"

� Org 0

� CENT equ 20h ; define memory location CENT (hundredths of second)

� SEC equ 21h ; define memory location SEC (it holds seconds)

� movlw d'5'

� movwf SEC ;Variable SEC is 5 (decimal)

� clrf CENT ;Clear CENT

� bsf STATUS, RP0 ; Go to bank 1

� movlw b‘00000000'

� movwf TRISB ; PORTB is output

� movlw b'11010111'

� movwf OPTION_REG ; define prescaler 1/256 PS2:PS0=111

� bcf STATUS, RP0 ;return to bank 0

� movlw b'01010101' ;Output a light motive to PORTB

� movwf PORTB

� loop1 movlw d'178'

� movwf TMR0 ;Delay=(256-178)*256*4/8 in µsec (=0,01 sec)

� bcf INTCON, T0IF ;Clear flag T0IF

� loop2 btfss INTCON, T0IF ;Wait for 0,01 sec

� goto loop2

� incf CENT,1

� movlw d'100'

� subwf CENT,w

� btfss STATUS,Z

� goto loop1 ;Repeat timer delay 100 times for total delay 1 sec

� clrf CENT

� decfsz SEC,f

� goto loop1 ; Repeat SEC times

� comf PORTB ;Toggle the LEDs

� loop3 goto loop3

� END

Measure 5 sec with Timer0 (continued)

Project No 4

� Design a real-time clock that toggles an LED at b7 of PORTB

every one second, while it uses the LEDs at the lower 6 bits of

PORTB in order to count up to 60 secs. The system is reset

every minute.

Interrupt signals in the 16F series

� An embedded system often needs to respond to external events

in a timely manner.

Such events can be

1. a subsystem dealing with an emergency and needing the intervention of

the CPU (for example, power failure, overheating, a dangerous occurrence

in the external world etc).

2. an on-chip peripheral needing to exchange data with the CPU

Therefore, an interrupt signal can originate from various sources

Upon receiving an interrupt, the CPU disables the orderly execution of the

program as soon as possible and starts executing another routine in order

to service the interrupt. This is the ISR (interrupt service routine).

Generic interrupt structure

An interrupt that can be disabled is a maskable interrupt

Interrupts are “stored” at an S-R bistable latch.

Different maskable sources are ORed before reaching a CPU and a
priority may be given

Interrupt sources in the 16F series:

External interrupt (RB0 or INT)
Timer0 overflow
PORTB interrupt on change
EEPROM write complete

Each interrupt source is associated with an enable bit and an Interrupt
flag. These are bits in the INTCON Register.

External interrupts are edge-triggered. The edge the interrupt responds to is
controlled by the setting of the INTEDG bit of the OPTION Register

The INTCON Register

The CPU response to an interrupt

How to program interrupts

� Start the ISR at the interrupt vector (location 0004 of program
memory)

� Enable the interrupt that is to be used, by setting the enable bit in
the INTCON Reg

� Set the Global Interrupt Enable (GIE) bit

� Clear the Interrupt flag within the ISR
� End the ISR with a retfie instruction

� Don’t forget to set up the interrupt source as an input!

Beware: upon interrupt the 16F series CPU loads PC with 04h.

This is the interrupt vector.
You may write the ISR starting from this address or you may have

the program jump to the ISR using a goto ISR instruction in 04h.

A program that uses interrupts. Appropriate for simulation!

#include "P16F877.inc"
TEMP equ 20h

Org 0 ;Reset vector is 00h
goto start ; Go to the main program
Org 4 ;Interrupt vector is 04h
incf TEMP, F ;Increment TEMP, count interrupts!
movf TEMP,W
movwf PORTC ;Contents of TEMP are shown on LEDs of PORTC
bcf INTCON, INTF ;Clear Interrupt flag INTF
retfie ;Return form interrupt and enable GIE

start
clrf TEMP ;zero TEMP
bsf STATUS, RP0 ;go to bank 1
movlw b'00000000'
movwf TRISC ;Initialize PORTC as output
bcf STATUS, RP0 ;go back to bank 0
bsf INTCON, INTE ;Enable external interrupt INT
bcf INTCON, INTF ;Clear interrupt flag INTF
bsf INTCON, GIE ;Enable Interrupts

loop goto loop ;main loop: wait for interrupt!
END

Project 5: The timer triggers an interrupt

Design an application which uses Timer0 in order to produce an
interrupt signal with frequency 20 Hz. Consider fosc=4MHz.
The ISR increments the content of a memory location.
Back in main program the result is displayed on PORTB.

Required reading:

You are expected to study chapter 6 (Working with time: Interrupts,
counters and timers) in Designing Embedded Systems with PIC
microcontrollers by Tim Wilmshurst.

