
Embedded Systems

Programming and Architectures

Dr John Kalomiros

Assis. Professor

Department of Post Graduate studies in
Communications and Informatics

Lecture No 7 : PIC 16F series
Organization and programming

Essentials of a computer system
and organization of memory access

a. Von-Neumann

b. Harvard

Medium PIC MCUs:

16F series

�Program memory (flash

EEPROM) 2K up to 8K

(13-bits Pr. Mem. addr bus)

�Instruction word: 14 bits

�Static RAM data memory

(File Registers 8-bit)=>

�8-bit data bus

�7 bits for direct addressing (128

bytes)+2 bits from STATUS

�Peripheral circuits: I/O Ports,

timers, Interrupts management

and serial interfaces

The programming
model of 16F PIC MCUs

Memory matrix:

4 memory banks

each bank: 128 registers

(00h-7Fh)

Part of each bank is SFR

The rest is GPR

SFRs affect hardware
functions

GPRs are given to the user

Total GPRs in 16F877: 368
bytes

The programming model of 16F PIC MCUs
The 16F877 STATUS Register

Important bits:

C: CARRY. It is set when addwf or subwf produce Carry

DC: Decimal Carry (useful in BCD arithmetic)

Z: Zero flag. It is set when arithmetic produces zero

RP0 and RP1: They form the 2 MS bits of the data
memory address. They are the bank selection bits.

Instruction Set of the 16F series grouped by functi on

Data transfer
commands

� movwf Reg

It copies the contents of Working

Register w to Register Reg

� movf Reg, w

It copies the content of register

Reg to the Working register w

� movlw k

It copies literal k to w. k here is a

literal number. It does not
represent a memory location, like

Reg above.

� bsf REG, b

sets bit b of REG file register

i.e. bsf 03, 5 ;sets b5 of STATUS register

� bcf REG, b

clears bit b of REG file register

i.e. bcf 03, 5 ;clears b5 of STATUS register

Single bit manipulation

Development cycle – development tools

Text Editor

Assembler

Linker

Simulator

Programmer

Debugger (in-circuit)

Emulator

Microcontroller development boards

One or more MCUs

Standard
peripherals for I/O,
like LEDs and push
buttons

A/D converters

Serial port

USB connectivity

Programming
ability

Programmers

PICSTART Plus

Programmer by
Microchip

It programs DIP
MCUs before they
are placed on-
circuit

PICkit3 In-Circuit Programmer-debugger

Very cool tool!

Comparatively cheap (~50€)

A possible development circuit

Hardware connections:
Understand supply and oscillator

Hardware connections:
Understand input hardware

Hardware connections:
Understand output hardware

A simple application on a raster

MPLAB IDE: An Integrated tool for Software
development

Example program for PIC 16F877
� ; project_name: DIR \ test1
� ;TITLE: This program reads PORTD and transfers data to PORT B
� ;6.10.2012 by John

� ;#include "p16f877.inc" ; You may either include the .inc file OR declare nam es for the SFRs, as below

� ;Optionally set Configuration Word bits: WDT OFF, Pow er-up timer ON, code protect OFF, XT oscillator
� list p=16F877 ;This is an optional directive
� ;Specify names for SFRs OR include the “pxxxxx.inc” file
� status equ 03
� portd equ 08
� trisd equ 08
� portb equ 06
� trisb equ 06

� Org 00 ;define the Reset vector
� ;Initialization of peripherals
� start bsf status, 5 ;select memory bank 1
� movlw b'00000111'
� movwf trisd ;the three first bits of portA are input
� movlw 00
� movwf trisb ;all pins of portB are output
� bcf status, 5 ;return to bank0
� ;main code starts here
� main clrf portd
� loop movf portd, w
� movwf portb
� goto loop
� end

Example program for PIC 16F877
– with only necessary directives and definitions

� ; project_name: DIR \ test1
� ;TITLE: this program reads PORTD and transfers data to PORTB
� ;6.10.2012 by John

� #include "p16f877.inc"

� ; In this line we optionally set Configuration Word bits:
� ; WDT OFF, Power-up timer ON, code protect OFF, XT oscillator, Low-Voltage Programming OFF

� Org 00 ;define the Reset vector
� ;Initialization of peripherals
� start bsf STATUS, RP0 ;select memory bank 1
� movlw b'00000111'
� movwf TRISD ;the three first bits of portA are input
� movlw 00
� movwf TRISB ;all pins of portB are output
� bcf STATUS, RP0 ;return to bank0

� ;main code starts here
� main clrf PORTB
� loop movf PORTD, w
� movwf PORTB
� goto loop
� end

Assembler directives and number
representations

Assembler file structure and the role of the Linker

Simple assembler
program development

Advanced assembler
program development

Assembler program
layout

� ;This program moves switch values
� ;from PortD to the leds of PortB
� ;project_name: test1, 6.10.2012

� list p=16F877 ;This is an optional directive
�

� ;Specify SFRs (optionally)
� status equ 03
� portd equ 08
� trisd equ 08
� portb equ 06
� trisb equ 06
�

� Org 00
� ;Initialization of peripherals
� start bsf status, 5

movlw b'00000111'
� movwf trisd

movlw 00
� movwf trisb

bcf status, 5
� ;main code starts here
� main clrf portd
� loop movf portd, w
� movwf portb
� goto loop
� end

The nature of the embedded application:
The control loop

The nature of the embedded application:

The super-loop

Automobile super-loop controller
for real-time operation

Flow diagrams and control-loops

Endless loop

The fridge control-loop

(project No 1)

Bit testing and flow control

� btfss Reg, b i.e. btfss STATUS, Z
;test bit b of Reg and skip next instruction if bit set

� btfsc Reg, b i.e. btfsc PORTD, 0
;test bit b of Reg and skip next instruction if bit 0

� incfsz Reg, decfsz Reg

� goto label or goto addr i.e. goto main or goto 08

� movwf PCL, addwf PCL

Test port pins and branch (example)

#include "p16F877.inc"

;Initialization

Org 0 ;Start from prog memory address 0

bsf STATUS, RP0 ;Change to bank1

movlw b'00000000' ;Make all pins of portB outputs

movwf TRISB

movlw b'11111111' ;Make all pins of portD inputs

movwf TRISD

bcf STATUS, RP0 ;Return to bank0

main movlw b'01010101' ;Output to portB

movwf PORTB

btfss PORTD, 0 ;Wait until pin0 of portD receives 1

goto $-1 ;Go to previous instruction

movlw b'10101010' ;change output combination to portB

movwf PORTB

btfss PORTD, 1 ;Wait until pin1 of portD receives 1

goto $-1

goto main

end

Arithmetic operations (unsigned, 8-bit)

� addlw number w=number+w addlw 05

� sublw number w=number-w sublw 2A

� addwf Reg, w or 0 w=Reg+w addwf 21h,0

� addwf Reg, 1 Reg=Reg+w

� subwf Reg, w or 0 w=Reg-w subwf 20h,w

� subwf Reg, 1 Reg=Reg-w

Example:
Write a program to sum all integers in interval [start value, max value]

START

Initialize element

(with start value)

Add element to sum

Is element=max?

No

Yes

Produce next

element

Endless

wait

Initialize sum

(with zero)

;This program adds up all integers in interval [start, max]
;For example from 1 to 10 [1, 10]

;The sum is stored in memory location 21h
;8.10.2012 by John Kalomiros

#include "p16f877.inc"

element equ 20h ;define address to store current added element
sum equ 21h ;define address for sum
start equ d'1' ;start int value (decimal)
max equ d'10' ;max int value (decimal)

Org 00
;Initialize memory

movlw 00

movwf sum ;initialize sum

movlw start

movwf element ;load first element

;main code starts here

main movf element,w

addwf sum,1 ;add current element to sum

movf element, w

sublw max ;compare element with stop value

btfsc STATUS, Z ;if element exceeds max value, then stop

loop goto loop ;endless loop - wait here

incf element ;otherwise produce next element

goto main ;continue loop

end

Subroutines

Subroutines: useful pieces of reusable code that can be
repeatedly called from any program location. Always in pairs of
Call…return see also: retlw xx

Delay subroutine (1ms)

� ;With crystal XT and fosc=4MHz, instruction cycle is 1 µs

� ;branch instructions (call, goto) take 2µs

� delay

� movlw 0F9 ;load decimal 249

� nop ;first two instructions take 2µs

� micro4

� addlw 0FF ;add -1 in 2's complement

� btfss STATUS,Z ;no skip: 1µs. With skip: 2µs

� goto micro4 ;2µs

� return ;2µs

Loop micro4 takes 4µs x 249 iterations=996µs

First two instructions of “delay” take 2µs

Call delay instruction takes 2 µs.

Total time from call delay to return =1000µs=1ms

Internal Timing issues

If external frequency is fosc, then Tosc=1/ fosc

For example with fosc=4MHz, Tosc=0,25µs

Execution of one instruction takes 4 cycles of the external clock:

fetch, decode, execute and store = 1 instruction cycle

In other words: Duration of 1 instruction cycle = 4*Tosc

For example with fosc=4MHz, 1 instruction takes 1µs

Timing issues (continued)

Duration of a group of instructions =
Number of instructions x duration of instruction cycle

Remember:

Branch instructions like goto, call, take 2 instruction cycles

btfss, btfsc, decfsc, take 2 cycles only when skip is performed

delay_ms
movwf msec

loop movlw 0F8 ;decimal 248
call micro4 ;248x4+2=994µs
nop
nop
decfsz msec, f
goto loop
return

micro4
addlw 0FF
btfss STATUS, Z
goto micro4
return

#include "p16f877.inc"

msec equ 20h

;don’t forget to initialize!

clrf PORTB

main movlw d'100'

call delay_ms

comf PORTB

end

A delay subroutine for up to 255 msec

Toggle the LED each time the button is pressed-relea sed
and count activations

START

Initialize

LED is OFF

Is button

pressed?

Toggle

No

Yes

i=i+1
Display to PORTD

Wrong code! Correct! Project No 2

START

Initialize

LED is OFF

Is button

pressed?

Toggle

No

Yes

Delay (30ms)

Is button

released?

Delay (30ms)

i=i+1

Display to PORTD

No

Yes

;This program adds up all elements of a matrix
;The matrix is held in program memory as a LUT
;For example matrix=[2, 10, 20, 3, 8], all decimal values
;The sum is projected on the LEDs of PORTB ;9.10.2012 by John Kalomiros

#include "p16f877.inc"

pointer equ 20h ;define address of current pointer value

sum equ 21h ;define address for sum

size equ d'5' ;matrix size (decimal)

Org 00

;Initialize ports

bsf STATUS, RP0

movlw b'00000000'

movwf TRISB

bcf STATUS, RP0

;Initialize memory

movlw 00

movwf sum ;initialize sum

clrf pointer ;initialize pointer(with zero)

clrf PORTB

Access matrix elements in LUT:
example: sum up elements in a matrix (1/2)

example: sum up elements in a matrix (continued 2/2)
Main code and LUT subroutine (with retlw xx)

;main code starts here

main movf pointer,w

call table

addwf sum,1 ;add new element to sum

incf pointer,1 ;increment pointer

movf pointer, w

sublw size ;compare new pointer with size value

btfss STATUS, Z ;if pointer exceeds size, then skip

goto main

movf sum, w

movwf PORTB ;show result on the LEDs of PORTB

loop goto loop

;This subroutine holds LookUp Table

table addwf PCL

retlw d'02‘ ;returns with xx value in WREG

retlw d'10'

retlw d'20'

retlw d'03'

retlw d'08'

end

Find the minimum among N elements in a matrix

First, put values in RAM memory:

Start with the maximum possible min value: min=0xFF

Then, scan all memory locations using FSR and INDF registers

and compare each value with the previous min value.

Update min value at each step.

Find the minimum among N elements in a matrix

Project No 3

START

Load FSR with start

memory address

Put values into

memory

Load min with 0xFF

Find difference

min-INDF

Is Carry=1?

(min<INDF?)

Update min

min INDF
min old min

Yes No

Increment FSR

Is current FSR value=

end memory address?

Yes

No
Endless

wait

Find the minimum among N elements in a matrix

;write code to put values into memory

;main routine

find_min clrf PORTB

movlw 0xFF
movwf min ;put in min the maximum possible value

movlw startf

movwf FSR ;start memory location in FSR

loop2 movf INDF,w ;access memory location in FSR

subwf min,w ;compare current memory value with min (min-w)

btfss STATUS,C ;if Carry=1 then result is negative (min<INDF)

movf min,w ;in which case min is minimum

btfsc STATUS,C ;if Carry=0 then sub result is positive (INDF<min)

movf INDF,w ;in which case INDF is minimum

movwf min ;update min

movf FSR,w

sublw endf ;check if current memory is last

btfsc STATUS,Z

goto label

incf FSR,1 ;access next memory location

goto loop2 ;repeat comparison

label movf min,w

movwf PORTB ;project the minimum value on PORTB

endless goto endless

Input a list into memory using DIP switches and a p ush button

� #include "p16F877.inc"
� __CONFIG _CP_OFF & _WDT_OFF & _XT_OSC & _PWRTE_OFF & _CPD_OFF &

_WRT_ENABLE_ON & _BODEN_ON & _LVP_OFF
�

� ;declarations-memory allocation
� msec equ 0x32 ;millisec value memory location for delay call
� startf equ 0x20 ;first address
� endf equ 0x24 ;last address. 5 values in memory
� min equ 0x31 ;allocate a reg for cuurent minimum
� index equ 0x33
� ;PORT Initialization
� Org 00 ;Start from prog memory address 0
� bsf STATUS, RP0 ;Change to bank1
� movlw b'00000000' ;Make all pins of portB outputs
� movwf TRISB
� movlw b'11111111' ;Make all pins of portD inputs
� movwf TRISD
� movlw b'00000001' ;Make pin0 of portC input
� movwf TRISC
� bcf STATUS, RP0 ;Return to bank0
� clrf PORTB
� clrf index

Input a list into memory using DIP switches (contin ued)

;part A: Read Input Data from PORTD and put the values in memory

movlw startf

movwf FSR

read btfss PORTC, 0 ;pin C0 p-b pressed?

goto $-1

movlw d'50' ;50 ms delay

call delay_ms ;delay to debounce

btfsc PORTC, 0 ;pin C0 p-b released?

goto $-1

movlw d'50'

call delay_ms ;delay to debounce

movf PORTD,w

movwf INDF ;store datum. Find memory location address in reg FSR

incf index,1

movf index,w

movwf PORTB ;project index on PORTB

movf FSR,w

sublw endf ;Is this the last input value?

btfsc STATUS, Z

goto find_min

incf FSR,1 ;access next input value

goto read ;read next value

Structured programming based on subroutines

;Find minimum among N elements with structured progra m
;Code structured with subroutines
;28.10.2012 by John Kalomiros

#include "p16F877.inc"
__CONFIG _CP_OFF & _WDT_OFF & _XT_OSC & _PWRTE_OFF & _CPD_OFF &

_WRT_ENABLE_ON & _BODEN_ON & _LVP_OFF

;variable definitions-memory allocation
msec equ 0x32 ;millisec value memory location
startf equ 0x20
endf equ 0x24 ;5 values in memory (N=5)
min equ 0x31 ;allocate a reg for cuurent minimum
index equ 0x33

Org 00 ;Start from prog memory address 0
main call initialize

call inp_vals
call find_min
movf min,w
movwf PORTB ;project the minimum value on PORTB

endless goto endless

CONFIGURATION BITS

These are part of the MCU’s internal memory. They can only be changed during programming (never

during run-time). They set the mode of function of certain internal units, like the oscillator, the WDT,

programming mode, etc.

You may set them in code using the declaration __CONFIG:

__CONFIG _CP_OFF & _WDT_OFF & _XT_OSC & _PWRTE_OFF & _CPD_OFF &

_WRT_ENABLE_ON & _BODEN_ON & _LVP_OFF

OR you may set them in MPLAB selecting Configure=>Configuration Bits in the

main menu

BEWARE: if you omit to set the configuration bits you are bound to run into potentially

serious problems

Required reading:

Designing Embedded Systems with PIC microcontrollers
by Tim Wilmshurst, chapters 4 and 5.

Embedded Systems design: A Unified Hardware-software approach
by Frank Vahid and Tony Givargis, chapter 1.

