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ope that you will agree that this beautiful model is a fitting climax to the
=iS On competing species.

2.16.9
‘ A MODEL FOR THE SPREAD OF DISEASE

2 infectious disease is spreading among a population of N individuals; al]
the progress of the disease will be assumed to be continuous. The
period of the disease is neglected or assumed to be zero. Someone
g from the disease may die or may be cured, in which case he or she
immune. The population contains the following groups:

."-Ii the

£ infective. Those who have got it.
3. susceptible. Those who are in danger of getting it.
R. removed. Those who have died, those who are isolated for treatment, and
those who have recovered and are immune.
16.11)
e symbols refer to actual numbers, then
ow the N=7+8§+R (4.17.1)
the symbols might represent units of thousands or even millions of
duals. (Scaling may be necessary on some computers to avoid overflow )
e that in (4.17.1) we are assuming that there is no change in the population
W emigration, by immigration, or by a nonbalanced natural birth and death
16.12) E 5
- We assume that the rate at which the disease spreads depends on the number
contacts between infected and susceptible individuals, so that it is proportional
the product S7. We also assume that the rate of removal is proportional to
> read) L. Then if the time ¢ is the independent variable, the equations for the mode]
e given 48 _
s with A
— = —aSI
dt o5
ou may
g ~bl + aSI, (4.17.2)
dr ,
dR
— = bl.
- dt
re/year . . .
=nch Only the first two equations need to be worried about, since, once they are
solved, R can be found from (4.17.1).
acre

As with Volterra’s predator—prey model, the time can be eliminated if the
first equation is divided by the second; then the separable equation

d_S B aSi
dl bl — 48]
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results, with solution

P e il o 08 = B ¥ gln (SIS0). (4.17.3)

Here, I, and S, are initial conditions. (Don’t just sit there, check it for yourself!)
Orbits in the S-I phase plane are shown in Figure 4.10 for the case a = b=1
they move from right to left. The ratio b/a is important here. If § is initially less
than b/a, then the disease immediately starts to die out. But if S is initially
greater than b/a, there is an increase and we have an “gpidemic.”

A quantity of interest is the rate dR/dt at which infectives are removed. This
rate might be the most visible sign of the disease s0 far as records are concerned;
it might also be proportional to the death rate. Curves for dR/dt = R' are plotted
in Figure 4.11, with the same initial conditions as the cases plotted in Figure
4.10.

!
A
2t 5 S§' = —A*S#l
|" = —B*l + AxSx|
A=1B=1

Figure 410 S = —SLIF= =1+ 5. Different orbits.

Notice that with the unit of time free, we canseta = 1. Also, the “interesting”
values of the parameters will depend on whether actual population figures are
used, or, if they are scaled, how they are scaled. Be prepared to experiment.
For your project, choose a ratio b/a. Start with a small number of infectives,
and vary the initial value for S. Consider how things might change if the disease
became more infectious (a increases) Or the diagnosis more effective (b in-
creases).

Discussion of these equations and many generalizations can be found in many
texts. See particularly The Mathematical Theory of Infectious Diseases and its
Applications by N. T. J. Bailey [3]. See also the text by Braun [5].
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S’ = —AxS¥|
I = —B*l + AsSx|
e A=1,B=1
1
E b
R © ——— TIME
2 4 6 8

re4.11 Same system as that for Figure 4.10. R’ is the
' rate of removal.

ROSS-INFECTION BETWEEN TWO SPECIES

#¢ consider a disease that can be transmitted between two distinct
Bs, but not between members of the same population. Let the two
ave populations N, and N,, and let S;, I, and R, be the numbers of
le. infected, and removed members, respectively, of the ith species,
= 1.2. Then, as in the preceding project, we have the equations

Ii = -—bIII + 3151123 Ié = _b212 + aZSZII’

Bl = 8L, Sy = —a,S,I,,
(4.18.1)
R| = b, R}, = b,

¢, there is no need to worry about the third equation in either set.
ent with these equations. Try sctting all the parameters equal to one.
start with the first population being entirely free of the disease, with

members of the second being infected. This model is rather general,
18 left to your initiative.

>
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POSSIBLE EFFECTS OF VACCINATION

nd in many

ceination will reduce the number of susceptibles, which means that we
gses and ifs

¢ modifying the first equation of (4.17.2). If the number vaccinated at
ime is V, we need a model for dV/dr. Accordingly, consider




(4.43.6)

(4.43.8)
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4.44 THE SIMPLE PENDULUM

We shall have a sequence of projects to do with pendulums, and it is fitting

to start with the simplest. The model for the “simple pendulum” has a mass m

connected to a fixed point O by a light rigid rod of length £. The system is set

up in a room where the constant acceleration due to gravity is g, and the rod

and mass are free to move in a vertical plane through O. All resisting forces are

neglected. If the rod makes the angle 6 with the downward vertical, as shown
in Figure 4.30, then the d.e. for the model is
d?*9 g

- = g" = —Esin 6. (4.44.1)

When 9 is small, we have the well known approximation

W+%B=& (4.44.2)

This is the equation of a harmonic oscillator with frequency Vg/€ and period
27\/€lg. These are independent of the (small) amplitude of the swing. Also
notice that the mass m does not appear in (4.44.1). If the frequency is called
g, then

(4.44.3)
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Figure 4.30 The simple pendulum.
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and w, is called the natural frequency of the system. In terms of w,, (4.44.1) can
be written as :

0" + wisin 0 = 0. (4.44.4)

The system has two equilibrium positions, one vertically down with 6 = 0
and stable, and the other vertically up with 8 =  and unstable. The motion '
may consist of swings or “librations,” or ‘there may be “‘circulation.”

The solutions are well described in the phase plane of 6 and 8'. A phase plane
diagram for several solutions is shown in Figure 4.31. Observe examples of the
different sorts of motion. You are likely to see similar diagrams in many texts,
but it is a good experience to generate at least one for yourself. Doing so is the

first part of this project.
The period of oscillation for librational motion does in fact depend on the

amplitude of the swing. Do some calculation to construct a table showing this
dependence, and deduce from the table how large the amplitude must be for
the approximation (4.44.2) to break down. Note that the period tends to infinity

as the amplitude tends to .

g
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: Figure 4.31 Phase diagram for 6" + sine = 0.
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4.45 THE PENDULUM WITH LINEAR DAMPING

The equation for the model is
0" + k0’ + wisin® = 0, (4.45.1)

where k is a positive constant. We assume that resisting forces (air resistance
or friction at the point of suspension) make up a torque that is proportional to
the rate of change of 8. As expected, all motion is damped: circulatory motion
eventually becomes librational, and the amplitude of librational motion de-
creases to zero. Two phase diagrams are shown in Figure 4.32.
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g

(b)

Figure 4.32 (a) Phase diagram for 6" + 0.16" + sine = 0; (b)
Phase diagram for ¢ + 0.56" + sine = 0.

As with the preceding project, make yourself familiar with the properties and
possibilities of this model through your own computation. For a game, start the
motion off with fast circulation, and see if you can guess in advance how many
circuits will be described before librational motion takes over.

446 THE PENDULUM WITH DRY FRICTION

If the surface of contact between two solids is dry, then the force resisting
the motion of one relative to the other may be described by “dry” or “Coulomb™
friction. We shall look at two models for this phenomenon. In the first, the
resisting force is constant in magnitude (with no dependence on the relative
velocity between the surfaces). The resulting model is given by

9" + kSgn(8") + wisin 6 = 0, (4.46.1)
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3. Motion with the pivot attached to the rim of a wheel which rotates at
constant angular speed: x, = A cos(wf), Yo = A sin{w).

of the limit
1able from those
n it will die out.
cited is (b) with
se of the grand-
=y derived from

The mathematical discussion of this model is not easy, but numerical exper-
imentation is most enjoyable. When planning which parameters and initial con-
ditions to try, imagine that you are holding the pivot in your hand, and see if
you can guess in advance what will happen.

This problem has attracted quite a lot of attention, and several papers have
“appeared in the literature—in particular, in the American Journal of Physics (a
journal that you should read regularly as a source of readable ideas and good
" models). There are two articles by F. M. Phelps and J. H. Hunter ([43], [44])
that you should look at; in the second of these, a demonstration apparatus is
described for showing possible stability in the laboratory. Of course, the com-
- puter is furnishing you with your own apparatus. Also, it is claimed that damping
' effects are not important for influencing the stability results. I suggest that when
you have found a stable solution, you add some damping terms to the equations

and check this assertion.

bdel. See if you
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um has not
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449 A PENDULUM WITH VARYING LENGTH

Here, the point of suspension might consist of a thin rod. The mass m is at
the end of a light, inextensible string, and the other end of the string can be
pulled over the rod. (See Figure 4.34.) Another way to think of this type of

pendulum is to consider a child at the end of a swing. The swing has energy

s moving. We
i “pumped”’ into it through changes in the posture of the child, and these changes

dimensions, in

1 the plane of * alter the distance of the center of mass of the system from the point of suspension
and yj, then, 0, or, essentially, the length of the pendulum.
owing differ-

(4.48.1)

n interact with
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Figure 4.34
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L% + 209" + gl sin g = .
Let

b=y, and o' = y,.

(4.49.2)
Then (4.49.1) can be written as the system

yi = Y2
Y2 = =(¢/L)sin(y,) — 2(L'IL)y,.
As always, you can add a damping term if you wish.

You can experiment with the system in several ways. Mostly, the variation
in L will be oscillatory, so you might let

(4.49.3)

L) =L, + L, sin(wt — 3),

where L, is smaller, perhaps much smaller, than L.
wy, Where wf = g/L,. Experiment with values of ¢ close
As w approaches W, you should see a dramatic fesonance effect, with the
amplitudes of the swings increasing. The phase angle § controls where in the

swing the maximum length occurs. What effect does this parameter have on the.
motion of the pendulum? !

(4.49.4)

The natural frequency is
to the natural frequency.

4.50 THE SPRING PENDULUM

In this model the mass m is at one end of a li 3
attached to the fixed point of suspension Q. The Spring remains straight, and
ion in i ; the spring constant is k. (See Figure 4.358

Let the unstretched length of the spring be Lo, and its length at time  be L(t).

Then, resolving accelerations and forces along and perpendicular to the spring,
we have

k
L' — 187 — gcos @ + —(L — L) =4,
L2 + 2LL'0" + gL sin g = (.

There are two “natural frequencies” in the model: ;= Vg/L, corresponds

to the pendulum without the spring; and 0, = \/%/m corresponds to the spring
without the pendulum. The vibrations

interesting ways, and this is especially n
rational number like 1, 2. of

in L and 6 can exchange energies in
oticeable if the ratio o,/w, is close to a
2. Then we can observe phenomena arising from



